Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Aperiodic activity indexes neural hyperexcitability in generalized epilepsy

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Aperiodic activity indexes neural hyperexcitability in generalized epilepsy

0 Datasets

0 Files

en
2024
Vol 11 (9)
Vol. 11
DOI: 10.1523/eneuro.0242-24.2024

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert Thomas Knight
Robert Thomas Knight

University of California, Berkeley

Verified
Markus Kopf
Jan Martini
Christina Stier
+6 more

Abstract

Generalized epilepsy (GE) encompasses a heterogenous group of hyperexcitability disorders that clinically manifest as seizures. At the whole-brain level, distinct seizure patterns as well as interictal epileptic discharges (IEDs) reflect key signatures of hyperexcitability in magneto- and electroencephalographic (M/EEG) recordings. Moreover, it had been suggested that aperiodic activity, specifically the slope of the 1/ƒ x decay function of the power spectrum, might index neural excitability. However, it remained unclear if hyperexcitability as encountered at the cellular level directly translates to putative large-scale excitability signatures, amenable to M/EEG. In order to test whether the power spectrum is altered in hyperexcitable states, we recorded resting state MEG from male and female GE patients (n = 51; 29 females; 28.82 ± 12.18 years; mean ± SD) and age-matched healthy controls (n = 49; 22 females; 32.10 ± 12.09 years). We parametrized the power spectra using FOOOF to separate oscillatory from aperiodic activity to directly test whether aperiodic activity is systematically altered in GE patients. We further identified IEDs to quantify the temporal dynamics of aperiodic activity around overt epileptic activity. The results demonstrate that aperiodic activity indexes hyperexcitability in GE at the whole-brain level, especially during epochs when no IEDs were present (p = 0.0130, d = 0.52). Upon IEDs, large-scale circuits transiently shifted to a less excitable network state (p = 0.001, d = 0.68). In sum, these results uncover that MEG background activity might index hyperexcitability based on the current brain state and does not rely on the presence of epileptic waveforms. Significance Statement It had long been suspected that electric brain activity is systematically altered in hyperexcitability disorders, such as epilepsy. To date, it remained unclear how pathologic aperiodic activity can be quantified. Kopf et al. demonstrate that aperiodic MEG activity indexes neural hyperexcitability, especially when epileptic discharges were absent; hence, providing a novel non-invasively biomarker that possibly reflects neural excitability at the level of whole-brain recordings.

How to cite this publication

Markus Kopf, Jan Martini, Christina Stier, Thomas Ethofer, Christoph Braun, Yiwen Li Hegner, Niels K. Focke, Justus Marquetand, Robert Thomas Knight (2024). Aperiodic activity indexes neural hyperexcitability in generalized epilepsy. , 11(9), DOI: https://doi.org/10.1523/eneuro.0242-24.2024.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1523/eneuro.0242-24.2024

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access