0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Cholinesterase inhibition is of great importance in the fight against neurodegenerative disorders such as Alzheimer's disease. Azole antifungals have come under the spotlight with recent discoveries that underline the efficacy and potential of miconazole and its derivatives against cholinesterase enzymes. In this study, we evaluated a library of azoles against acetylcholinesterase and butyrylcholinesterase using in vitro and in silico methods to identify potent inhibitors. Low micromolar IC 50 values were obtained for imidazole derivatives, which were further tested and found potent competitive cholinesterase inhibitors via enzyme kinetics study. The active derivatives showed negligible toxicity in in vitro cytotoxicity tests. Molecular modeling studies predicted that these derivatives were druglike, could penetrate blood‐brain barrier, and tightly bind to cholinesterase active site making key interactions via the imidazole moiety at protonated state. Thus, current study identifies potent and competitive cholinesterase inhibitor azoles with minor toxicity and potential to pass into the central nervous system.
Suat Sarı, Didem Akkaya, Merve Zengin, Suna Sabuncuoğlu, Zeynep Özdemir, Mehmet Abdullah Alagöz, Arzu Karakurt, Burak Barut (2022). Antifungal Azole Derivatives Featuring Naphthalene Prove Potent and Competitive Cholinesterase Inhibitors with Potential CNS Penetration According to the <i>in Vitro</i> and <i>in Silico</i> Studies. , 19(7), DOI: https://doi.org/10.1002/cbdv.202200027.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/cbdv.202200027
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access