0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper describes charge transport by tunneling across self-assembled monolayers (SAMs) of thiol-terminated derivatives of oligo(ethylene glycol) (HS(CH2CH2O)nCH3; HS(EG)nCH3); these SAMs are positioned between gold bottom electrodes and Ga2O3/EGaIn top electrodes. Comparison of the attenuation factor (β of the simplified Simmons equation) across these SAMs with the corresponding value obtained with length-matched SAMs of oligophenyls (HS(Ph)nH) and n-alkanethiols (HS(CH2)nH) demonstrates that SAMs of oligo(ethylene glycol) have values of β (β(EG)n = 0.29 ± 0.02 natom-1 and β = 0.24 ± 0.01 Å-1) indistinguishable from values for SAMs of oligophenyls (β(Ph)n = 0.28 ± 0.03 Å-1), and significantly lower than those of SAMs of n-alkanethiolates (β(CH2)n = 0.94 ± 0.02 natom-1 and 0.77 ± 0.03 Å-1). There are two possible origins for this low value of β. The more probable involves hole tunneling by superexchange, which rationalizes the weak dependence of the rate of charge transport on the length of the molecules of HS(EG)nCH3 using interactions among the high-energy, occupied orbitals associated with the lone-pair electrons on oxygen. Based on this mechanism, SAMs of oligo(ethylene glycol)s are good conductors (by hole tunneling) but good insulators (by electron and/or hole drift conduction). This observation suggests SAMs derived from these or electronically similar molecules are a new class of electronic materials. A second but less probable mechanism for this unexpectedly low value of β for SAMs of S(EG)nCH3 rests on the possibility of disorder in the SAM and a systematic discrepancy between different estimates of the thickness of these SAMs.
Mostafa Baghbanzadeh, Carleen M. Bowers, Dmitrij Rappoport, Tomasz Żaba, Yuan Li, Kyung‐Tae Kang, Kung‐Ching Liao, Mathieu Gonidec, Philipp Rothemund, Piotr Cyganik, Alán Aspuru‐Guzik, George M M Whitesides (2017). Anomalously Rapid Tunneling: Charge Transport across Self-Assembled Monolayers of Oligo(ethylene glycol). , 139(22), DOI: https://doi.org/10.1021/jacs.7b02770.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.7b02770
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access