0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAn analytical model was developed in this study to predict the heat transfer and ignition time of solids subjected to time-dependent thermal radiation (HF=at b ). Both surface and in-depth absorptions, corresponding to opaque and translucent materials, were considered in the model and critical temperature was employed. The predictions of the new model fit well with the experimental and numerical results. The results show that for surface absorption the ignition time to the power of −(b+0.5) is proportional to a, and the reciprocal of square root of ignition time is linearly correlated with ignition HF. Furthermore, a critical ignition HF was found to represent the lower limit of ignition HF range, which is different with the critical HF at constant HF. While for in-depth absorption, the ignition time to the power of −(b+1) and −1 were linearly proportional to a/(b+1) and ignition HF, respectively. For translucent solids, the analytical model cannot be applied to constant HF but can provide relatively high accuracy in predicting ignition time under variable HF. Also, the effect of in-depth absorption coefficient on ignition time were addressed, and it was found that this important parameter exerts its influence on ignition process following the similar mechanism with that of constant HF.
Junhui Gong, Jing Li, Chenyang Li, Long Shi, Xuan Wang, Supan Wang, Juncheng Jiang, Zhirong Wang (2018). Analytical prediction of heat transfer and ignition time of solids exposed to time-dependent thermal radiation. International Journal of Thermal Sciences, 130, pp. 227-239, DOI: 10.1016/j.ijthermalsci.2018.04.015.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Thermal Sciences
DOI
10.1016/j.ijthermalsci.2018.04.015
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access