0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAnalysis and design of siphonic roof drainage systems are usually performed with specific software developed by the system’s manufacturers. An experimental study was carried out to verify if a general software for the analysis of hydraulic pressurized pipe networks can be used to analyze a siphonic roof drainage system. A test model was built and tests were conducted to compare the prototype results with simulation runs in EPANET. A new EPANET data model was developed to overcome software limitations for the siphonic drainage systems analysis. Considering the results, less than 5% of average error was observed between the measures in the real test model and the simulation results, which can be attributed to measurement error. To validate the EPANET data model, it was compared with a specific software that analyzes siphonic roof drainage systems. It can be concluded that EPANET is a software that can be used to analyze and, therefore, to design, siphonic roof drainage systems in buildings.
Gonzalo López-Patiño, Pedro L. Iglesias‐Rey, F. Javier Martínez-Solano, Alberto Patino Vanegas (2023). Analysis of Siphonic Roof Drainage Systems with EPANET. Environments, 10(7), pp. 123-123, DOI: 10.3390/environments10070123.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Environments
DOI
10.3390/environments10070123
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access