Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. An L$_0$L$_1$-norm compressive sensing paradigm for the construction of sparse predictive lattice models using mixed integer quadratic programming

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2018

An L$_0$L$_1$-norm compressive sensing paradigm for the construction of sparse predictive lattice models using mixed integer quadratic programming

0 Datasets

0 Files

en
2018
DOI: 10.48550/arxiv.1807.10753arxiv.org/abs/1807.10753

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Gerbrand Ceder
Gerbrand Ceder

University of California, Berkeley

Verified
Wenxuan Huang
Alexander Urban
Penghao Xiao
+6 more

Abstract

First-principles based lattice models allow the modeling of ab initio thermodynamics of crystalline mixtures for applications such as the construction of phase diagrams and the identification of ground state atomic orderings. The recent development of compressive sensing approaches for the construction of lattice models has further enabled the systematic construction of sparse physical models without the need for human intuition other than requiring the compactness of effective cluster interactions. However, conventional compressive sensing based on L1-norm regularization is strictly only applicable to certain classes of optimization problems and is otherwise not guaranteed to generate optimally sparse and transferable results, so that the method can only be applied to some materials science applications. In this paper, we illustrate a more robust L0L1-norm compressive-sensing method that removes the limitations of conventional compressive sensing and generally results in sparser lattice models that are at least as predictive as those obtained from L1-norm compressive sensing. Apart from the theory, a practical implementation based on state-of-the-art mixed-integer quadratic programming (MIQP) is proposed. The robustness of our methodology is illustrated for four different transition-metal oxides with relevance as battery cathode materials: Li2xTi2(1-x)O2, Li2xNi2yO2, MgxCr2O4, and NaxCrO2. This method provides a practical and robust approach for the construction of sparser and more predictive lattice models, improving on the compressive sensing paradigm and making it applicable to a much broader range of applications.

How to cite this publication

Wenxuan Huang, Alexander Urban, Penghao Xiao, Ziqin Rong, Hena Das, Tina Chen, Nongnuch Artrith, Alexandra J. Toumar, Gerbrand Ceder (2018). An L$_0$L$_1$-norm compressive sensing paradigm for the construction of sparse predictive lattice models using mixed integer quadratic programming. , DOI: https://doi.org/10.48550/arxiv.1807.10753.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2018

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.48550/arxiv.1807.10753

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access