0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWith developing interest in NH3 as a prospective energy carrier, combustor designs and fuelling concepts require optimisation to reduce NOx emissions. Through the introduction of staged combustor concepts, pathways have previously been identified that limit NOx production whilst improving combustor efficiency and reducing unburned NH3. However, the efficacy of secondary air staging is sensitive to the primary flame behaviour, and whilst low NOx emissions can be achieved at rich conditions, high unburned NH3 leads to greater global NOx concentrations from downstream production. Here, time-resolved OH*, NH2* and NH* chemiluminescence were employed together for the first time for NH3-air and NH3 H2-air flames to investigate a primary flame configuration that produced the lowest combined emissions concentration. A generic, fuel-flexible burner was developed to enable partial and full premixing, together with operation of a swirl-stabilised non-premixed flame. Initially, NH3 H2-air flames were employed in a range of configurations and produced markedly different chemiluminescence and emissions results as functions of global equivalence ratio. The performance of a pure NH3-air flame was subsequently investigated and compared to the blended fuel results. Optical trends complemented changes in sampled exhaust emissions, enabling analysis of intermediate chemistry. Burner inlet temperature and pressure were then increased proportionally to maintain equivalent bulk nozzle exit velocities. Contrasting trends were identified as functions of fuel composition and equivalence ratio, with a comprehensive database of optical and analytical results generated. Results obtained for NH3 H2-air suggest the most favourable configuration resulted from a partially premixed flame employing H2 as a pilot, operating under rich conditions (Φ=1.2). However, at higher temperatures and pressures, the trends observed for non-premixed NH3-air flames will lead to superior performance, particularly with a small increase in equivalence ratio.
D. Pugh, Jon Runyon, Philip John Bowen, Anthony Giles, Agustin Valera Medina, Richard Marsh, Burak Göktepe, Sally Hewlett (2020). An investigation of ammonia primary flame combustor concepts for emissions reduction with OH*, NH2* and NH* chemiluminescence at elevated conditions. Proceedings of the Combustion Institute, 38(4), pp. 6451-6459, DOI: 10.1016/j.proci.2020.06.310.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Proceedings of the Combustion Institute
DOI
10.1016/j.proci.2020.06.310
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access