Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm

0 Datasets

0 Files

English
2019
Engineering Structures
Vol 199
DOI: 10.1016/j.engstruct.2019.109637

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guido De Roeck
Guido De Roeck

University Of Leuven

Verified
H. Tran-Ngoc
Samir Khatir
Guido De Roeck
+2 more

Abstract

This paper presents a new approach for damage detection in structures by applying a flexible combination based on an artificial neural network (ANN) and cuckoo search (CS) algorithm. ANN has become one of the most powerful tools employing computational intelligence techniques to tackle complex problems in numerous fields. However, due to the application of backpropagation algorithms based on gradient descent, a major drawback of ANN is the common problem of local minima that acts as a great hindrance to the search for the best solution. To overcome this disadvantage, we propose to combine ANN with evolutionary algorithms based on global search techniques. This paper employs CS to improve ANN training parameters (weight and bias) by minimizing the difference between real and desired outputs and then using these parameters to generate the network. Two numerical models, comprising a steel beam calibrated using experimental measurements and a large-scale truss bridge, are used to assess the robustness of the proposed approach. The results demonstrate that ANN combined with CS (ANN-CS) is accurate and requires a lower computational time than ANN, and evolutionary algorithm (EA) alone in terms of structural damage localization and quantification.

How to cite this publication

H. Tran-Ngoc, Samir Khatir, Guido De Roeck, Thanh Bui-Tien, Magd Abdel Wahab (2019). An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm. Engineering Structures, 199, pp. 109637-109637, DOI: 10.1016/j.engstruct.2019.109637.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Engineering Structures

DOI

10.1016/j.engstruct.2019.109637

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access