Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. An artificial intelligence's interpretation of complex high-resolution in situ transmission electron microscopy data

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2023

An artificial intelligence's interpretation of complex high-resolution in situ transmission electron microscopy data

0 Datasets

0 Files

en
2023
DOI: 10.26434/chemrxiv-2023-p1pc4-v2

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
Xingzhi Wang
Chang Yan
Justin C. Ondry
+2 more

Abstract

In situ transmission electron microscopy (TEM) has enabled researchers to visualize complicated nano- and atomic-scale processes with sub-Angstrom spatial resolution and millisecond time resolution. These processes are often highly dynamical and can be time-consuming to analyze and interpret. Here, we report how variational autoencoders (VAEs), a deep learning algorithm, can provide an artificial intelligence’s interpretation of high-resolution in situ TEM data by condensing and deconvoluting complicated atomic-scale dynamics into a latent space with reduced dimensionality. In this work, we designed a VAEs model with high latent dimensions capable of deconvoluting information from complex high-resolution TEM data. We demonstrate how this model with high latent dimensions trained on atomically resolved TEM images of lead sulfide (PbS) nanocrystals is able to capture movements and perturbations of periodic lattices in both simulated and real in situ TEM data. The VAEs model shows capability of detecting and deconvoluting dynamical nanoscale physical processes, such as the rotation of crystal lattices and intraparticle ripening during the annealing of semiconductor nanocrystals. With the help of the VAEs model, we can identify an in situ observation that can serve as a direct experimental evidence of the existence of intraparticle ripening. The VAEs model provides a potent tool for facilitating the analysis and interpretation of complex in situ TEM data as a part of an autonomous experimental workflow.

How to cite this publication

Xingzhi Wang, Chang Yan, Justin C. Ondry, Peter Ercius, Paul Alivisatos (2023). An artificial intelligence's interpretation of complex high-resolution in situ transmission electron microscopy data. , DOI: https://doi.org/10.26434/chemrxiv-2023-p1pc4-v2.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.26434/chemrxiv-2023-p1pc4-v2

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access