0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMetal-based nanoparticles are a promising class of materials for diagnosis and treatment of cancer and other diseases. However, mechanisms of action of these nanomedicines remain insufficiently understood due in large part to our limited understanding of the dynamic equilibria between solid metal nanoparticles and labile metal ions generated from these nanoparticles within complex biological milieus. Here we apply activity-based sensing to directly identify and investigate the fate of labile copper pools with metal and oxidation state-specificity generated by anticancer copper nanomedicines. We found that treatment of cells with copper-releasing nanoparticles alter labile Cu(I)/Cu(II) ratios through an increase in labile Cu(II), while overall labile copper levels decrease. Labile copper release triggers compensatory responses in two major antioxidant pathways, glutathione (GSH) and nuclear factor erythroid 2–related factor 2 (NRF2), as well as in metal homeostasis to limit copper availability via regulation of copper export (ATP7B) and of copper import (CTR1) proteins. These findings establish the value of activity-based sensing as a generalizable approach for labile metal imaging to help decipher molecular mechanisms of bioactive metal nanoparticles and guide the development of more effective nanomedicine diagnostics and therapies to target metal-dependent disease vulnerabilities.
Javier Bonet‐Aleta, Aidan T. Pezacki, Miku Oi, José L. Hueso, Jesús Santamaría, Christopher J Chang (2025). An Activity-Based Sensing Approach to Monitor Nanomaterial-Promoted Changes in Labile Metal Pools in Living Systems. , DOI: https://doi.org/10.26434/chemrxiv-2023-0hzxw-v3.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
6
Datasets
0
Total Files
0
DOI
https://doi.org/10.26434/chemrxiv-2023-0hzxw-v3
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access