Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2022

An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4

0 Datasets

0 Files

en
2022
DOI: 10.26434/chemrxiv-2022-9p94z

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Dean Toste
Dean Toste

University of California, Berkeley

Verified
Audrey G. Reeves
Angel Gonzalez-Valero
Patrick J. Moon
+18 more

Abstract

Activity-based protein profiling (ABPP) is a versatile strategy for enabling identification and characterization of new functional protein sites and discovery of lead compounds for therapeutic development. Yet, the vast majority of ABPP methods applied for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to the cancer-driver protein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new hyperreactive, ligandable methionine residues, including an allosteric M169 site that is proximal to an activating T172 phosphorylation site. With this information in hand, we designed and synthesized a new methionine-targeting covalent ligand library based on oxaziridine fragments bearing a diverse array of heterocyclic, heteroatom, and stereochemically-rich substituents. ABPP screening of this focused library against a clickable broad-spectrum ReACT probe identified 1oxF11 as a covalent modifier of the CDK4/Cyclin-D1 heterodimer at the M169 site. This compound inhibited CDK4 kinase activity in a dose-dependent manner on purified protein and in live cells. Further biochemical analyses with a phospho-specific CDK4 antibody revealed crosstalk between M169 oxidation and T172 phosphorylation upon 1oxF11 treatment, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression at the S-phase checkpoint. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.

How to cite this publication

Audrey G. Reeves, Angel Gonzalez-Valero, Patrick J. Moon, Edward Y. Miller, Katia Coulonval, Steven W. M. Crossley, Xiao Xie, Dan He, Patricia Z. Musacchio, Alec H. Christian, Jeffrey M. McKenna, Richard Lewis, Eric Fang, Dustin Dovala, Yipin Lu, Lynn M. McGregor, Markus Schirle, John A. Tallarico, Pierre Roger, Dean Toste, Christopher J. Chang (2022). An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4. , DOI: https://doi.org/10.26434/chemrxiv-2022-9p94z.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

21

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.26434/chemrxiv-2022-9p94z

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access