0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessArtificial intelligence and machine learning are reshaping how we approach scientific discovery, not by replacing established methods but by extending what researchers can probe, predict, and design. In this roadmap we provide a forward-looking view of AI-enabled science across biology, chemistry, climate science, mathematics, materials science, physics, self-driving laboratories and unconventional computing. Several shared themes emerge: the need for diverse and trustworthy data, transferable electronic-structure and interatomic models, AI systems integrated into end-to-end scientific workflows that connect simulations to experiments and generative systems grounded in synthesisability rather than purely idealised phases. Across domains, we highlight how large foundation models, active learning and self-driving laboratories can close loops between prediction and validation while maintaining reproducibility and physical interpretability. Taken together, these perspectives outline where AI-enabled science stands today, identify bottlenecks in data, methods and infrastructure, and chart concrete directions for building AI systems that are not only more powerful but also more transparent and capable of accelerating discovery in complex real-world environments.
Stephen G. Dale, N. Kazeev, Alastair J. A. Price, Víctor Posligua, Stephan Roche, O. Anatole von Lilienfeld, Konstantin ‘kostya’ Novoselov, Xavier Bresson, Gianmarco Mengaldo, Xudong Chen, T. Okane, Emily R. Lines, Matthew J. Allen, Amandine E. Debus, Clayton Miller, Jiayu Zhou, Hiroko H. Dodge, D. Rousseau, A. Ustyuzhanin, Zonghuan Yan, Mario Lanza, Fabio Sciarrino, Ryo Yoshida, Zhidong Leong, Teck Leong Tan, Qianxiao Li, Adil Kabylda, Igor Poltavsky, Alexandre Tkatchenko, Sherif Abdulkader Tawfik, P.S. Kamath, Theo Jaffrelot Inizan, Kristin A. Persson, Bryant Y. Li, Vir Karan, Chenru Duan, Haojun Jia, Qiyuan Zhao, Hiroyuki Hayashi, Atsuto Seko, Isao Tanaka, Omar M Yaghi, Tim Gould, Bun Chan, Stefan Vuckovic, T. S. Li, Min Lin, Zichao Tang, Yang Li, Yong Xu, Amrita Joshi, Xiaonan Wang, Leonard W. T. Ng, Sergei V. Kalinin, Mahshid Ahmadi, Jiyizhe Zhang, Shuyuan Zhang, Alexei A. Lapkin, Ming Xiao, Zhe Wu, Kedar Hippalgaonkar, Limsoon Wong, Lorenzo Bastonero, Nicola Marzari, Dorye Luis Esteras Cordoba, Andrei Tomut, Andreus Cristhian Linhares Andrade, Jose-Hugo Garcia (2025). AI4X Roadmap: Artificial Intelligence for the advancement of scientific pursuit and its future directions. , DOI: https://doi.org/10.48550/arxiv.2511.20976.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2025
Authors
68
Datasets
0
Total Files
0
DOI
https://doi.org/10.48550/arxiv.2511.20976
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access