0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Scanning transmission electron microscopy is a common tool used to study the atomic structure of materials. It is an inherently multimodal tool allowing for the simultaneous acquisition of multiple information channels. Despite its versatility, however, experimental workflows currently rely heavily on experienced human operators and can only acquire data from small regions of a sample at a time. Here, we demonstrate a flexible pipeline-based system for high-throughput acquisition of atomic-resolution structural data using an all-piezo sample stage applied to large-scale imaging of nanoparticles and multimodal data acquisition. The system is available as part of the user program of the Molecular Foundry at Lawrence Berkeley National Laboratory.
Alexander J. Pattison, Cássio Cardoso Santos Pedroso, Bruce E. Cohen, Justin C. Ondry, Paul Alivisatos, Wolfgang Theis, Peter Ercius (2023). Advanced techniques in automated high-resolution scanning transmission electron microscopy. , 35(1), DOI: https://doi.org/10.1088/1361-6528/acf938.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1088/1361-6528/acf938
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access