Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Additional soil organic carbon storage potential in global croplands

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Additional soil organic carbon storage potential in global croplands

0 Datasets

0 Files

en
2021
DOI: 10.5194/soil-2021-73

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Pete Smith
Pete Smith

University of Aberdeen

Verified
José Padarian
Budiman Minasny
Alex B. McBratney
+1 more

Abstract

Abstract. Soil organic carbon sequestration (SOCseq) is considered the most attractive carbon capture technology to partially mitigate climate change. However, there is conflicting evidence regarding the potential of SOCseq. The additional storage potential on existing global cropland is missing. SOCseq is region-specific and conditioned by management but most global estimates use fixed accumulation rates or time frames. Here, we show how the SOC storage potential and its steady state varies globally depending on climate, land use and soil. Using 83,416 soil observations, we developed a quantile regression neural network that quantifies the SOC variation within soils with similar characteristics. This allows us to identify similar areas that present higher SOC with the difference representing an additional storage potential. The estimated additional SOC storage potential of 29 to 67 Pg C in the topsoil of global croplands equates to only 2 to 5 years of emissions offsetting and 32 % of agriculture's 92 Pg historical carbon debt estimate due to conversion from natural ecosystems. Since SOC is temperature-dependent, this potential is likely to reduce by 18 % by 2040 due to climate change.

How to cite this publication

José Padarian, Budiman Minasny, Alex B. McBratney, Pete Smith (2021). Additional soil organic carbon storage potential in global croplands. , DOI: https://doi.org/10.5194/soil-2021-73.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.5194/soil-2021-73

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access