0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the data-driven era, collecting high-quality labeled data requiring human labor is a common approach for training data-hungry models, called crowdsourcing. Recently, end-to-end learning from crowds has shown its flexibility and practicality. However, existing works in an end-to-end manner focus on learning after collecting labels, which results in noisy annotations and also requires cost. Inspired by computerized adaptive testing, we argue that the characteristics of workers should be mined as soon as possible to make the best use of talents. To this end, we propose an adaptive learning from crowds method, AdaCrowd, as a cost-effective solution. Specifically, we propose a probabilistic model to capture the informativeness of possible instances for each worker. The informativeness is considered to be the uncertainty of the annotation prediction model output in its current status. The adaptive learning procedure is optimized by maximizing data likelihood and can be used with existing crowdsourcing models. Extensive experiments are conducted on real-world datasets, LabelMe and CIFAR-10H. The experimental results, e.g., the reduction of annotations without performance degradation, demonstrate the effectiveness.
Hang Yang, Zhiwu Li, Witold Pedrycz (2025). Adaptive Deep Learning from Crowds. , DOI: https://doi.org/10.24963/ijcai.2025/475.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.24963/ijcai.2025/475
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access