Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Abstract PR13: Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Abstract PR13: Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer

0 Datasets

0 Files

en
2020
Vol 26 (13_Supplement)
Vol. 26
DOI: 10.1158/1557-3265.ovca19-pr13

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Elaine Sanij
Elaine Sanij

Institution not specified

Verified
Elaine Sanij
Katherine M. Hannan
Jiachen Xuan
+21 more

Abstract

Abstract Introduction: PARP inhibitors (PARPi) have revolutionized disease management of patients with homologous recombination (HR) DNA repair-deficient high-grade serous ovarian cancer (HGSOC). However, acquired resistance to PARPi is a major challenge in the clinic. The specific inhibitor of RNA polymerase I (Pol I) transcription of ribosomal RNA genes (rDNA) has demonstrated single-agent antitumor activity in p53 wild-type and p53-mutant hematologic malignancies (first-in-human trial, dose escalation study of CX-5461 at Peter MacCallum Cancer Centre) (Khot et al., Cancer Discov 2019). CX-5461 has also been reported to exhibit synthetic lethality with BRCA1/2 deficiency through stabilization of G-quadruplex DNA (GQ) structures. Here, we investigate the efficacy of CX-5461 in treating HGSOC. Experimental Design: The mechanisms by which CX-5461 induces DNA damage response (DDR) and displays synthetic lethality in HR-deficient HGSOC cells are explored. We present in vivo data of mice bearing two functionally and genomically profiled HGSOC-patient-derived xenograft (PDX)s treated with CX-5461 and olaparib, alone and in combination. We also investigate CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Results: Utilizing ovarian cancer cell lines, we demonstrate that sensitivity to CX-5461 is associated with “BRCA1 mutation” and “MYC targets” gene expression signatures. In addition, sensitivity to CX-5461 is associated with high basal rates of Pol I transcription. Importantly, we demonstrate a novel mechanism for CX-5461 synthetic lethal interaction with HR deficiency mediated through the induction of replication stress at rDNA repeats. Our data reveal CX-5461-mediated DDR in HR-deficient cells does not involve stabilization of GQ structures as previously proposed. On the contrary, we show definitively that CX-5461 inhibits Pol I recruitment leading to rDNA chromatin defects including stabilization of R-loops, single-stranded DNA, and replication stress at the rDNA. Mechanistically, we demonstrate CX-5461 leads to replication-dependent DNA damage involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 has a different sensitivity spectrum to olaparib and cooperates with PARPi in exacerbating replication stress, leading to enhanced therapeutic efficacy in HR-deficient HGSOC-PDX in vivo compared to single-agent treatment of both drugs. Further, CX-5461 exhibits single-agent efficacy in olaparib-resistant HGSOC-PDX overcoming PARPi-resistance mechanisms involving fork protection. Importantly, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. Conclusions: CX-5461 is a promising therapy alone and in combination therapy with PARPi in HR-deficient HGSOC. CX-5461 also has exciting potential as a treatment option for patients with relapsed HGSOC tumors that have high MYC activity and poor clinical outcome; these patients currently have very limited effective treatment options. This abstract is also being presented as Poster A71. Citation Format: Elaine Sanij, Katherine Hannan, Jiachen Xuan, Shunfei Yan, Jessica A. Ahern, Anna S. Trigos, Natalie Brajanovski, Jinbae Son, Keefe T. Chan, Olga Kondrashova, Elizabeth Lieschke, Matthew J. Wakefield, Sarah Ellis, Carleen Cullinane, Gretchen Poortinga, Kum Kum Khanna, Linda Mileshkin, Grant A. McArthur, John Soong, Els M. Berns, Ross D. Hannan, Clare L. Scott, Karen E. Sheppard, Richard B. Pearson. Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer [abstract]. In: Proceedings of the AACR Special Conference on Advances in Ovarian Cancer Research; 2019 Sep 13-16, 2019; Atlanta, GA. Philadelphia (PA): AACR; Clin Cancer Res 2020;26(13_Suppl):Abstract nr PR13.

How to cite this publication

Elaine Sanij, Katherine M. Hannan, Jiachen Xuan, Shunfei Yan, Jessica Ahern, Anna Trigos, Natalie Brajanovski, Jinbae Son, Keefe T. Chan, Olga Kondrashova, Elizabeth Lieschke, Matthew J. Wakefield, Sarah Ellis, Carleen Cullinane, Gretchen Poortinga, Kum Kum Khanna, Linda Mileshkin, Grant A. McArthur, John Soong, Els M.J.J. Berns, Ross D. Hannan, Clare L. Scott, Karen E. Sheppard, Richard B. Pearson (2020). Abstract PR13: Inhibition of RNA polymerase I transcription activates targeted DNA damage response and enhances the efficacy of PARP inhibitors in high-grade serous ovarian cancer. , 26(13_Supplement), DOI: https://doi.org/10.1158/1557-3265.ovca19-pr13.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

24

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1158/1557-3265.ovca19-pr13

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access