0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe task of classification and localization with detecting abnormalities in medical images is considered very challenging. Computer-aided systems have been widely employed to address this issue, and the proliferation of deep learning network architectures is proof of the outstanding performance reported in the literature. However, localizing abnormalities in regions of images that can support the confidence of classification continues to attract research interest. The difficulty of using digital histopathology images for this task is another drawback, which needs high-level deep learning models to address the situation. Successful pathology localization automation will support automatic acquisition planning and post-imaging analysis. In this paper, we address issues related to the combination of classification with image localization and detection through a dual branch deep learning framework that uses two different configurations of convolutional neural networks (CNN) architectures. Whole-image based CNN (WCNN) and region-based CNN (RCNN) architectures are systematically combined to classify and localize abnormalities in samples. A multi-class classification and localization of abnormalities are achieved using the method with no annotation-dependent images. In addition, seamless confidence and explanation mechanism is provided so that outcomes from WCNN and RCNN are mapped together for further analysis. Using images from both BACH and BreakHis databases, an exhaustive set of experiments was carried out to validate the performance of the proposed method in achieving classification and localization simultaneously. Obtained results showed that the system achieved a classification accuracy of 97.08%, a localization accuracy of 94%, and an area under the curve (AUC) of 0.10 for classification. Further findings from this study revealed that a multi-neural network approach could provide a suitable method for addressing the combinatorial problem of classification and localization anomalies in digital medical images. Lastly, the study's outcome offers means for automating the annotation of histopathology images and the support for human pathologists in locating abnormalities.
Olaide N. Oyelade, Absalom E. Ezugwu, Hein S. Venter, Seyedali Mirjalili, Amir Gandomi (2022). Abnormality classification and localization using dual-branch whole-region-based CNN model with histopathological images. Computers in Biology and Medicine, 149, pp. 105943-105943, DOI: 10.1016/j.compbiomed.2022.105943.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Computers in Biology and Medicine
DOI
10.1016/j.compbiomed.2022.105943
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access