Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Abnormality classification and localization using dual-branch whole-region-based CNN model with histopathological images

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Abnormality classification and localization using dual-branch whole-region-based CNN model with histopathological images

0 Datasets

0 Files

English
2022
Computers in Biology and Medicine
Vol 149
DOI: 10.1016/j.compbiomed.2022.105943

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Olaide N. Oyelade
Absalom E. Ezugwu
Hein S. Venter
+2 more

Abstract

The task of classification and localization with detecting abnormalities in medical images is considered very challenging. Computer-aided systems have been widely employed to address this issue, and the proliferation of deep learning network architectures is proof of the outstanding performance reported in the literature. However, localizing abnormalities in regions of images that can support the confidence of classification continues to attract research interest. The difficulty of using digital histopathology images for this task is another drawback, which needs high-level deep learning models to address the situation. Successful pathology localization automation will support automatic acquisition planning and post-imaging analysis. In this paper, we address issues related to the combination of classification with image localization and detection through a dual branch deep learning framework that uses two different configurations of convolutional neural networks (CNN) architectures. Whole-image based CNN (WCNN) and region-based CNN (RCNN) architectures are systematically combined to classify and localize abnormalities in samples. A multi-class classification and localization of abnormalities are achieved using the method with no annotation-dependent images. In addition, seamless confidence and explanation mechanism is provided so that outcomes from WCNN and RCNN are mapped together for further analysis. Using images from both BACH and BreakHis databases, an exhaustive set of experiments was carried out to validate the performance of the proposed method in achieving classification and localization simultaneously. Obtained results showed that the system achieved a classification accuracy of 97.08%, a localization accuracy of 94%, and an area under the curve (AUC) of 0.10 for classification. Further findings from this study revealed that a multi-neural network approach could provide a suitable method for addressing the combinatorial problem of classification and localization anomalies in digital medical images. Lastly, the study's outcome offers means for automating the annotation of histopathology images and the support for human pathologists in locating abnormalities.

How to cite this publication

Olaide N. Oyelade, Absalom E. Ezugwu, Hein S. Venter, Seyedali Mirjalili, Amir Gandomi (2022). Abnormality classification and localization using dual-branch whole-region-based CNN model with histopathological images. Computers in Biology and Medicine, 149, pp. 105943-105943, DOI: 10.1016/j.compbiomed.2022.105943.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Computers in Biology and Medicine

DOI

10.1016/j.compbiomed.2022.105943

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access