Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Wearable Fingertip Force Feedback Device System for Object Stiffness Sensing

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

A Wearable Fingertip Force Feedback Device System for Object Stiffness Sensing

0 Datasets

0 Files

en
2024
Vol 15 (6)
Vol. 15
DOI: 10.3390/mi15060693

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Changcheng Wu
Jianli Ren
Qingqing Cao
+3 more

Abstract

Virtual reality technology brings a new experience to human-computer interaction, while wearable force feedback devices can enhance the immersion of users in interaction. This paper proposes a wearable fingertip force feedback device that uses a tendon drive mechanism, with the aim of simulating the stiffness characteristics of objects within virtual scenes. The device adjusts the rotation angle of the torsion spring through a DC motor, and then uses a wire to convert the torque into a feedback force at the user’s index fingertips, with an output force of up to 4 N and a force change rate of up to 10 N/s. This paper introduces the mechanical structure and design process of the force feedback device, and conducts a mechanical analysis of the device to select the appropriate components. Physical and psychological experiments are conducted to comprehensively evaluate the device’s performance in conveying object stiffness information. The results show that the device can simulate different stiffness characteristics of objects, and users can distinguish objects with different stiffness characteristics well when wearing the force feedback device and interacting with the three-dimensional virtual environments.

How to cite this publication

Changcheng Wu, Jianli Ren, Qingqing Cao, Zeran Yue, Ting Fang, Aiguo Song (2024). A Wearable Fingertip Force Feedback Device System for Object Stiffness Sensing. , 15(6), DOI: https://doi.org/10.3390/mi15060693.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.3390/mi15060693

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access