0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDeveloping synthetic methodology to crystallize extended covalent structures has been an important pursuit of reticular chemistry. Here, we report a homogeneous synthetic route for imine covalent organic frameworks (COFs) where crystallites emerge from clear solutions without forming amorphous polyimine precipitates. The key feature of this route is the utilization of tert-butyloxycarbonyl group protected amine building blocks, which are deprotected in situ and gradually nucleate the crystalline framework. We demonstrate the utility of this approach by crystallizing a woven covalent organic framework (COF-112), in which covalent organic threads are interlaced to form a three-dimensional woven framework. The homogeneous imine COF synthesis also enabled the control of nucleation and crystal growth leading to uniform nanocrystals, through microwave-assisted reactions, and facile preparation of oriented thin films.
Yingbo Zhao, Lei Guo, Felipe Gándara, Yanhang Ma, Zheng Liu, Chenhui Zhu, Hao Lyu, Christopher A. Trickett, Eugene A. Kapustin, Osamu Terasaki, Omar M Yaghi (2017). A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks. , 139(37), DOI: https://doi.org/10.1021/jacs.7b07457.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.7b07457
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access