0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSelf-healing polymer coatings are a type of smart material aimed for advanced corrosion protection of metals. This paper presents the synthesis and characterization of two new UV-cure self-healing coatings based on acrylated polycaprolactone polyurethanes. On a macroscopic scale, the cured films all show outstanding mechanical properties, combining relatively high Young's modulus of up to 270 MPa with a strain at break above 350%. After thermal activation the strained films recover up to 97% of their original length. Optical and electron microscopy reveals the self-healing properties of these coatings on hot dip galvanized steel with scratches and microindentations. The temperature-induced closing of such defects restores the corrosion protection and barrier properties of the coating as shown by electrochemical impedance spectroscopy and scanning vibrating electrode technique. Therefore, such coatings are a complementary option for encapsulation-based autonomous corrosion protection systems.
Alexander Lutz, Otto van den Berg, Jonas Van Damme, Karen Verheyen, Erwin Bauters, Iris De Graeve, Filip Du Prez, Herman Terryn (2014). A Shape-Recovery Polymer Coating for the Corrosion Protection of Metallic Surfaces. ACS Applied Materials & Interfaces, 7(1), pp. 175-183, DOI: 10.1021/am505621x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
ACS Applied Materials & Interfaces
DOI
10.1021/am505621x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access