0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The rapid adoption of machine learning in various scientific domains calls for the development of best practices and community agreed-upon benchmarking tasks and metrics. We present Matbench Discovery as an example evaluation framework for machine learning energy models, here applied as pre-filters to first-principles computed data in a high-throughput search for stable inorganic crystals. We address the disconnect between (1) thermodynamic stability and formation energy and (2) retrospective and prospective benchmarking for materials discovery. Alongside this paper, we publish a Python package to aid with future model submissions and a growing online leaderboard with adaptive user-defined weighting of various performance metrics allowing researchers to prioritize the metrics they value most. To answer the question of which machine learning methodology performs best at materials discovery, our initial release includes random forests, graph neural networks, one-shot predictors, iterative Bayesian optimizers and universal interatomic potentials. We highlight a misalignment between commonly used regression metrics and more task-relevant classification metrics for materials discovery. Accurate regressors are susceptible to unexpectedly high false-positive rates if those accurate predictions lie close to the decision boundary at 0 eV per atom above the convex hull. The benchmark results demonstrate that universal interatomic potentials have advanced sufficiently to effectively and cheaply pre-screen thermodynamic stable hypothetical materials in future expansions of high-throughput materials databases.
Janosh Riebesell, Rhys E. A. Goodall, Philipp Benner, Yuan Chiang, Bowen Deng, Gerbrand Ceder, Mark Asta, Alpha A. Lee, Anubhav Jain, Kristin A. Persson (2025). A framework to evaluate machine learning crystal stability predictions. , 7(6), DOI: https://doi.org/10.1038/s42256-025-01055-1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s42256-025-01055-1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access