Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A deep reinforcement learning approach to energy management control with connected information for hybrid electric vehicles

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

A deep reinforcement learning approach to energy management control with connected information for hybrid electric vehicles

0 Datasets

0 Files

English
2023
Engineering Applications of Artificial Intelligence
Vol 123
DOI: 10.1016/j.engappai.2023.106239

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Peng Mei
Hamid Reza Karimi
He‐Hui Xie
+3 more

Abstract

Considering the importance of the energy management strategy for hybrid electric vehicles, this paper is aiming at addressing the energy optimization control issue using reinforcement learning algorithms. Firstly, this paper establishes a hybrid electric vehicle power system model. Secondly, a hierarchical energy optimization control architecture based on networked information is designed, and a traffic signal timing model is used for vehicle target speed range planning in the upper system. More specifically, the optimal vehicle speed is optimized by a model predictive control algorithm. Thirdly, a mathematical model of vehicle speed variation in connected and unconnected states is established to analyze the effect of vehicle speed planning on fuel economy. Finally, three learning-based energy optimization control strategies, namely Q-learning, deep Q network (DQN), and deep deterministic policy gradient (DDPG) algorithms, are designed under the hierarchical energy optimization control architecture. It is shown that the Q-learning algorithm is able to optimize energy control; however, the agent will meet the "dimension disaster" once it faces a high-dimensional state space issue. Then, a DQN control strategy is introduced to address the problem. Due to the limitation of the discrete output of DQN, the DDPG algorithm is put forward to achieve continuous action control. In the simulation, the superiority of the DDPG algorithm over Q-learning and DQN algorithms in hybrid electric vehicles is illustrated in terms of its robustness and faster convergence for better energy management purposes.

How to cite this publication

Peng Mei, Hamid Reza Karimi, He‐Hui Xie, Fei Chen, Cong Huang, Shichun Yang (2023). A deep reinforcement learning approach to energy management control with connected information for hybrid electric vehicles. Engineering Applications of Artificial Intelligence, 123, pp. 106239-106239, DOI: 10.1016/j.engappai.2023.106239.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Engineering Applications of Artificial Intelligence

DOI

10.1016/j.engappai.2023.106239

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access