Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A data-driven ground fault detection and isolation method for main circuit in railway electrical traction system

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

A data-driven ground fault detection and isolation method for main circuit in railway electrical traction system

0 Datasets

0 Files

English
2018
ISA Transactions
Vol 87
DOI: 10.1016/j.isatra.2018.11.031

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Zhiwen Chen
Xueming Li
Chao Yang
+4 more

Abstract

Due to the complex and harsh operation conditions, like corrosion, aging cable and static electricity, of electrical traction drive system, ground fault will generate large short circuit current to harm the key components. Effective fault diagnosis is important, but also challenging. The conventional method used for ground fault detection only takes advantage of voltage measurements of DC-link. Other measurements onboard are also available, which are correlated with the voltage measurements. Taking the correlation into account will improve the detection performance. To this end, this paper presents a data-driven solution, which makes full use of the correlation between the voltage measurements with other measurements onboard. The proposed method consists of two components: (1) a canonical correlation analysis-based fault detection method, which takes into account the correlation within measurements; (2) a fault isolation method by means of the fault direction, which can be obtained with the available faulty data stored in the long-term operation. The developed method is applied to a traction drive system. It is shown that the proposed approach is able to improve the fault detection and isolation performance significantly with respect to three performance indicators, namely fault detection rate, detection delay and correct isolation rate, in comparison with the conventional method, which only uses the voltage measurements of DC-link.

How to cite this publication

Zhiwen Chen, Xueming Li, Chao Yang, Tao Peng, Chunhua Yang, Hamid Reza Karimi, Weihua Gui (2018). A data-driven ground fault detection and isolation method for main circuit in railway electrical traction system. ISA Transactions, 87, pp. 264-271, DOI: 10.1016/j.isatra.2018.11.031.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

ISA Transactions

DOI

10.1016/j.isatra.2018.11.031

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access