Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H<sub>2</sub> Uptake at 298 K

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2012

A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H<sub>2</sub> Uptake at 298 K

0 Datasets

0 Files

en
2012
Vol 3 (18)
Vol. 3
DOI: 10.1021/jz301000m

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Omar M Yaghi
Omar M Yaghi

University of California, Berkeley

Verified
Jose L. Mendoza‐Cortes
William A. Goddard
Hiroyasu Furukawa
+1 more

Abstract

Physisorption in porous materials is a promising approach for meeting H2 storage requirements for the transportation industry, because it is both fully reversible and fast at mild conditions. However, most current candidates lead to H2 binding energies that are too weak (leading to volumetric capacity at 298 K of <10 g/L compared to the DOE 2015 Target of 40 g/L). Using accurate quantum mechanical (QM) methods, we studied the H2 binding energy to 48 compounds based on various metalated analogues of five common linkers for covalent organic frameworks (COFs). Considering the first transition row metals (Sc though Cu) plus Pd and Pt, we find that the new COF-301-PdCl2 reaches 60 g total H2/L at 100 bar, which is 1.5 times the DOE 2015 target of 40 g/L and close to the ultimate (2050) target of 70 g/L. The best current materials, MOF-200 and MOF-177, are predicted to store 7.6 g/L (0.54 wt % excess) and 9.6 g/L (0.87 wt % excess), respectively, at 298 K and 100 bar compared with 60 g/L (4.2 wt % excess) for COF-301-PdCl2.

How to cite this publication

Jose L. Mendoza‐Cortes, William A. Goddard, Hiroyasu Furukawa, Omar M Yaghi (2012). A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H<sub>2</sub> Uptake at 298 K. , 3(18), DOI: https://doi.org/10.1021/jz301000m.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2012

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jz301000m

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access