Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2023

A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions

0 Datasets

0 Files

English
2023
arXiv (Cornell University)
DOI: 10.48550/arxiv.2307.13179

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Navid Yazdanjue
Hossein Yazdanjouei
Hassan Gharoun
+3 more

Abstract

In recent decades, social network anonymization has become a crucial research field due to its pivotal role in preserving users' privacy. However, the high diversity of approaches introduced in relevant studies poses a challenge to gaining a profound understanding of the field. In response to this, the current study presents an exhaustive and well-structured bibliometric analysis of the social network anonymization field. To begin our research, related studies from the period of 2007-2022 were collected from the Scopus Database then pre-processed. Following this, the VOSviewer was used to visualize the network of authors' keywords. Subsequently, extensive statistical and network analyses were performed to identify the most prominent keywords and trending topics. Additionally, the application of co-word analysis through SciMAT and the Alluvial diagram allowed us to explore the themes of social network anonymization and scrutinize their evolution over time. These analyses culminated in an innovative taxonomy of the existing approaches and anticipation of potential trends in this domain. To the best of our knowledge, this is the first bibliometric analysis in the social network anonymization field, which offers a deeper understanding of the current state and an insightful roadmap for future research in this domain.

How to cite this publication

Navid Yazdanjue, Hossein Yazdanjouei, Hassan Gharoun, Mohammad Sadegh Khorshidi, Morteza Rakhshaninejad, Amir Gandomi (2023). A Comprehensive Bibliometric Analysis on Social Network Anonymization: Current Approaches and Future Directions. arXiv (Cornell University), DOI: 10.48550/arxiv.2307.13179.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

DOI

10.48550/arxiv.2307.13179

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access