Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A comparative study on the mechanical properties, autogenous shrinkage and cracking proneness of alkali-activated concrete and ordinary Portland cement concrete

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

A comparative study on the mechanical properties, autogenous shrinkage and cracking proneness of alkali-activated concrete and ordinary Portland cement concrete

0 Datasets

0 Files

en
2021
Vol 292
Vol. 292
DOI: 10.1016/j.conbuildmat.2021.123418

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Ye Guang
Ye Guang

Institution not specified

Verified
Zhenming Li
Brice Delsaute
Tianshi Lu
+3 more

Abstract

This study aims to compare the developments of mechanical properties and autogenous shrinkage related properties of alkali-activated materials-based concrete (AC) and ordinary Portland cement-based concrete (OC) against curing age and degree of reaction. Temperature Stress Testing Machines are utilized to monitor the evolution of the internal tensile stress and the cracking occurrence in the restrained concrete. It is found that AC shows lower tensile strength-to-compressive strength ratios than OC. The mechanical properties of both OC and AC can be modelled by a power law against the degree of reaction. AC shows higher autogenous shrinkage, but later cracking than OC when under restrained condition. However, the degrees of reaction at which AC and OC cracked are very similar. From the autogenous shrinkage, the elastic modulus and the self-induced stress, the elastic and creep deformations of the concrete can be calculated. AC is found to show much higher creep coefficient than OC.

How to cite this publication

Zhenming Li, Brice Delsaute, Tianshi Lu, Albina Kostiuchenko, Stéphanie Staquet, Ye Guang (2021). A comparative study on the mechanical properties, autogenous shrinkage and cracking proneness of alkali-activated concrete and ordinary Portland cement concrete. , 292, DOI: https://doi.org/10.1016/j.conbuildmat.2021.123418.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.conbuildmat.2021.123418

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access