Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. A comparative study on evolutionary multi-objective algorithms for next release problem

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

A comparative study on evolutionary multi-objective algorithms for next release problem

0 Datasets

0 Files

English
2023
Applied Soft Computing
Vol 144
DOI: 10.1016/j.asoc.2023.110472

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Iman Rahimi
Amir Gandomi
Mohammad Reza Nikoo
+1 more

Abstract

The next release problem (NRP) refers to implementing the next release of software in the software industry regarding the expected revenues; specifically, constraints like limited budgets indicate that the total cost corresponding to the next software release should be minimized. This paper uses and investigates the comparative performance of nineteen state-of-the-art evolutionary multi-objective algorithms, including NSGA-II, rNSGA-II, NSGA-III, MOEAD, EFRRR, tDEA, KnEA, MOMBIII, SPEA2, RVEA, NNIA, HypE, ANSGA-III, BiGE, GrEA, IDBEA, SPEAR, SPEA2SDE, and MOPSO, that can tackle this problem. The problem was designed to maximize customer satisfaction and minimize the total required cost. Three indicators, namely hyper-volume (HV), spread, and runtime, were examined to compare the algorithms. Two types of datasets, i.e., classic and realistic data, from small to large scale, were also examined to verify the applicability of the results. Overall, NSGA-II exhibited the best CPU run time in all test scales, and, also, the results show that the HV and spread values of 1st and 2nd best algorithms (NNIA and SPEAR), for which most HV values for NNIA are bigger than 0.708 and smaller than 1, while the HV values for SPEAR vary between 0.706 and 0.708. Finally, the conclusion and direction for future works are discussed.

How to cite this publication

Iman Rahimi, Amir Gandomi, Mohammad Reza Nikoo, Fang Chen (2023). A comparative study on evolutionary multi-objective algorithms for next release problem. Applied Soft Computing, 144, pp. 110472-110472, DOI: 10.1016/j.asoc.2023.110472.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Applied Soft Computing

DOI

10.1016/j.asoc.2023.110472

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access