0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach.
Xiaoge Zhang, Andrew Adamatzky, Felix T.S. Chan, Yong Deng, Hai Yang, Xin-she Yang, Michail‐Antisthenis Tsompanas, Georgios Ch. Sirakoulis, Sankaran Mahadevan (2015). A Biologically Inspired Network Design Model. Scientific Reports, 5(1), DOI: 10.1038/srep10794.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/srep10794
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access