RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

​
We’ll occasionally send product updates. No spam.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. UAV-Enabled Aerial Base Station (BS) III/III: Capacity Characterization of UAV-Enabled Two-User Broadcast Channel

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2018

UAV-Enabled Aerial Base Station (BS) III/III: Capacity Characterization of UAV-Enabled Two-User Broadcast Channel

0 Datasets

0 Files

$0 Value

English
2018
arXiv (Cornell University)

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Qingqing Wu
Jie Xu
Rui Zhang

Abstract

Although prior works have exploited the UAV's mobility to enhance the wireless communication performance under different setups, the fundamental capacity limits of UAV-enabled/aided multiuser communication systems have not yet been characterized. To fill this gap, we consider in this paper a UAV-enabled two-user broadcast channel (BC), where a UAV flying at a constant altitude is deployed to send independent information to two users at different fixed locations on the ground. We aim to characterize the capacity region of this new type of BC over a given UAV flight duration, by jointly optimizing the UAV's trajectory and transmit power/rate allocations over time, subject to the UAV's maximum speed and maximum transmit power constraints. First, to draw essential insights, we consider two special cases with asymptotically large/low UAV flight duration/speed, respectively. For the former case, it is shown that a simple hover-fly-hover (HFH) UAV trajectory with time division multiple access (TDMA) based orthogonal multiuser transmission is capacity-achieving, while in the latter case, the UAV should hover at a fixed location that is nearer to the user with larger achievable rate and in general superposition coding (SC) based non-orthogonal transmission with interference cancellation at the receiver of the nearer user is required. Next, we consider the general case with finite UAV speed and flight duration. We show that the optimal UAV trajectory should follow a general HFH structure, i.e., the UAV successively hovers at a pair of initial and final locations above the line segment of the two users each with a certain amount of time and flies unidirectionally between them at the maximum speed, and SC is generally needed.

How to cite this publication

Qingqing Wu, Jie Xu, Rui Zhang (2018). UAV-Enabled Aerial Base Station (BS) III/III: Capacity Characterization of UAV-Enabled Two-User Broadcast Channel. arXiv (Cornell University)

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2018

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access