RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

​
We’ll occasionally send product updates. No spam.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2020

Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain

0 Datasets

0 Files

$0 Value

English
2020
arXiv (Cornell University)

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
Lior Rokach
Lior Rokach

Ben-Gurion University of the Negev

Verified
Ihai Rosenberg
Asaf Shabtai
Yuval Elovici
+1 more

Abstract

In recent years machine learning algorithms, and more specifically deep learning algorithms, have been widely used in many fields, including cyber security. However, machine learning systems are vulnerable to adversarial attacks, and this limits the application of machine learning, especially in non-stationary, adversarial environments, such as the cyber security domain, where actual adversaries (e.g., malware developers) exist. This paper comprehensively summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques and illuminates the risks they pose. First, the adversarial attack methods are characterized based on their stage of occurrence, and the attacker's goals and capabilities. Then, we categorize the applications of adversarial attack and defense methods in the cyber security domain. Finally, we highlight some characteristics identified in recent research and discuss the impact of recent advancements in other adversarial learning domains on future research directions in the cyber security domain. This paper is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain, map them in a unified taxonomy, and use the taxonomy to highlight future research directions.

How to cite this publication

Ihai Rosenberg, Asaf Shabtai, Yuval Elovici, Lior Rokach (2020). Adversarial Machine Learning Attacks and Defense Methods in the Cyber Security Domain. arXiv (Cornell University)

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2020

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

arXiv (Cornell University)

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access