0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe Chinese University of Hong Kong
Wireless energy transfer (WET) is a green enabler of low-power Internet of Things (IoT). Therein, traditional optimization schemes relying on full channel state information (CSI) are often too costly to implement due to excessive energy consumption and high processing complexity. This letter proposes a simple, yet effective, energy beamforming scheme that allows a multi-antenna power beacon (PB) to fairly power a set of IoT devices by only relying on the first-order statistics of the channels. In addition to low complexity, the proposed scheme performs favorably as compared to benchmarking schemes and its performance improves as the number of PB's antennas increases. Finally, it is shown that further performance improvement can be achieved through proper angular rotations of the PB.
Onel L. Alcaraz López, Francisco A. Monteiro, Hirley Alves, Rui Zhang, Matti Latva-aho (2020). A Low-Complexity Beamforming Design for Multiuser Wireless Energy Transfer. arXiv (Cornell University)
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access